3 research outputs found

    How to Survive Identity Management in the Industry 4.0 Era

    Get PDF
    Industry 4.0 heavily builds on massive deployment of Industrial Internet of Things (IIoT) devices to monitor every aspect of the manufacturing processes. Since the data gathered by these devices impact the output of critical processes, identity management and communications security are critical aspects, which commonly rely on the deployment of X.509 certificates. Nevertheless, the provisioning and management of individual certificates for a high number of IIoT devices involves important challenges. In this paper, we present a solution to improve the management of digital certificates in IIoT environments, which relies on partially delegating the certificate enrolment process to an edge server. However, in order to preserve end-to-end security, private keys are never delegated. Additionally, for the protection of the communications between the edge server and the IIoT devices, an approach based on Identity Based Cryptography is deployed. The proposed solution considers also the issuance of very short-lived certificates, which reduces the risk of using expired or compromised certificates, and avoids the necessity of implementing performance expensive protocols such as Online Certificate Status Protocol (OCSP). The proposed solution has been successfully tested as an efficient identity management solution for IIoT environments in a real industrial environment.This work was supported in part by the Spanish Ministry of Science and Innovation through the National Towards zeRo toUch nEtwork and services for beyond 5G (TRUE-5G) Project under Grant PID2019-108713RB-C53, in part by the European Commission through the Electronic Components and Systems for European Leadership-Joint Undertaking (ECSEL-JU) 2018 Program under the framework of key enabling technologies for safe and autonomous drones' applications (COMP4DRONES) Project under Grant 826610, with the national financing from France, Spain, Italy, The Netherlands, Austria, Czech, Belgium, and Latvia, in part by the Ayudas Cervera para Centros Tecnologicos Grant of the Spanish Centre for the Development of Industrial Technology (CDTI) through the Project EGIDA under Grant CER-20191012, and in part by the Basque Country Government through the Creating Trust in the Industrial Digital Transformation (TRUSTIND) ELKARTEK Program Project under Grant KK-2020/00054

    Improving efficiency and security of IIoT communications using in-network validation of server certificate

    Get PDF
    The use of advanced communications and smart mechanisms in industry is growing rapidly, making cybersecurity a critical aspect. Currently, most industrial communication protocols rely on the Transport Layer Security (TLS) protocol to build their secure version, providing confidentiality, integrity and authentication. In the case of UDP-based communications, frequently used in Industrial Internet of Things (IIoT) scenarios, the counterpart of TLS is Datagram Transport Layer Security (DTLS), which includes some mechanisms to deal with the high unreliability of the transport layer. However, the (D)TLS handshake is a heavy process, specially for resource-deprived IIoT devices and frequently, security is sacrificed in favour of performance. More specifically, the validation of digital certificates is an expensive process from the time and resource consumption point of view. For this reason, digital certificates are not always properly validated by IIoT devices, including the verification of their revocation status; and when it is done, it introduces an important delay in the communications. In this context, this paper presents the design and implementation of an in-network server certificate validation system that offloads this task from the constrained IIoT devices to a resource-richer network element, leveraging data plane programming (DPP). This approach enhances security as it guarantees that a comprehensive server certificate verification is always performed. Additionally, it increases performance as resource-expensive tasks are moved from IIoT devices to a resource-richer network element. Results show that the proposed solution reduces DTLS handshake times by 50–60 %. Furthermore, CPU use in IIoT devices is also reduced, resulting in an energy saving of about 40 % in such devices.This work was financially supported by the Spanish Ministry of Science and Innovation through the TRUE-5G project PID2019-108713RB-C54/AEI/10.13039/501100011033. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK Program, project REMEDY - Real tiME control and embeddeD securitY (KK-2021/00091)

    Industrial Data Homogenization and Monitoring Scheme with Blockchain Oracles

    Get PDF
    Research efforts on Distributed Ledger Technologies (DLTs) for industrial applications have constantly been increasing over the last years. The use of DLTs in the Industry 4.0 paradigm provides traceability, integrity, and immutability of the generated industrial data. However, Industry 4.0 ecosystems are typically composed of multiple smart factory clusters belonging to several companies, which are immersed in constant interaction with other business partners, clients, or suppliers. In such complex ecosystems, multiple DLTs are necessarily employed to maintain the integrity of the data throughout the whole process, from when the data is generated until it is processed at higher levels. Moreover, industrial data is commonly heterogeneous, which causes compatibility issues, along with security and efficiency issues in the homogenization process. Thus, the data needs to be pre-processed and homogenized in a secure manner before being exploited. Consequently, in this work, we address the issues mentioned above by providing an industrial raw data pre-processing and homogenization process according to a standard data model. We employ decentralized blockchain oracles to guarantee the integrity of the external data during the homogenization process. Hereafter, we design an interoperable plant blockchain for trustworthy storage and processing of the resulting homogenized data across several industrial plants. We also present a prototype implementation of the aforementioned scheme and discuss its effectiveness. Finally, we design a monitoring scheme to overview the usage the performance of the architecture processes and identify possible performance and security issues.This work has been financed by the European Commission through the Horizon Europe program under the IDUNN project (grant agreement number 101021911). It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK program, project ELKARTEK program, project REMEDY - REal tiME control and embeddeD securitY (KK-2021/00091)
    corecore